

Design Optimization: An Overview

Todd Munson and Stefan Wild Argonne National Laboratory

Toolkit for Advanced Optimization

$$\min \left\{ f(x): l \le c(x) \le u \right\}$$

- Open-source package for numerical optimization on high-performance architectures
 - Some development funded under SciDAC-1 and SciDAC-2
 - Built on the PETSc infrastructure and linear solvers
 - Has been used in many applications since initial release in 2000 (over 6,700 downloads)
 - Chemisty (NWChem), Nuclear Physics (UNEDF HFBTHO, HFODD, MFDn)
 - Image processing, Machine learning, Medical applications
- Support for a range of optimization types with varying derivative requirements
 - Unconstrained and bound-constrained optimization methods
 - Black-box methods POUNDER and others
 - Gray-box methods POUNDERs for nonlinear least squares
 - Gradient-based methods guasi-Newton methods
 - Hessian-based methods Newton with a trust region and/or line search
 - PDE-constrained optimization methods using derivatives
 - · Linearly constrained augmented Lagrangian method
 - Methods for complementarity problems and variational inequalities
 - Active-set methods
 - Semismooth Newton methods

http://www.mcs.anl.gov/tao

PDE-Constrained Optimization

$$\min\left\{ f(x,y): c(x,y) = 0 \right\}$$

- Simulation c uniquely determines state variables x given decision variables y
- Goal is to determine decision variables to optimize some metric
- Many ways to solve problems depending on available information
 - Nonlinear elimination of simulation constraint
 - Derivative-free optimization applicable when there is a small number of decision variables
 - Gradient-based methods used when adjoint information is available
 - Newton-based schemes
 - Linearized constraints
 - Quadratic approximation of objective function
 - Solve a linearly-constrained quadratic program
- Important questions that need to be answered:
 - What is the objective function? Is it smooth?
 - What are the design variables and how many? Are there discrete choices?
 - What are the constraints and how many? Are there design and state constraints?
 - Are global solutions important? Is the problem convex?
 - How much derivative information is available?

Three Views of the Design Optimization Problem

- Unconstrained and bound-constrained optimization
 - Combine optimization criteria into a single objective
 - Eliminate the simulation constraint and solve reduced problem
 - Apply derivative-free or gradient-based methods
 - Additional constraints can be imposed
 - Analytic constraints with full information
 - Simulation constraints with partial derivative information
- Constrained optimization
 - Produce a single objective and possibly restrict feasible region
 - Apply a constrained optimization method to the full problem
 - Use Newton-based methods
- Multi-objective optimization
 - Construct Pareto surfaces
 - Explore surfaces to make tradeoffs

Derivative-free Design Optimization

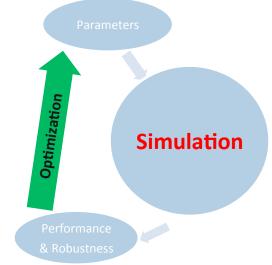
Simultaneous Objectives

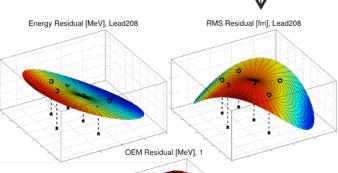
Maximize performance while

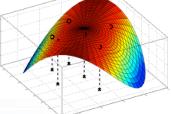
Avoiding potential disruptions due to instabilities

Simulation measures distances to instabilitites

- Model-based optimization methods use past simulation results to reduce the number of simulations needed
 - Surrogate models constructed using existing expensive objective values
 - Optimization over surrogate models determines next parameter set to evaluate
 - Distance to an instability region can be well-behaved even though transitions are sharp
- Decisions need to be made regarding the optimization problem
 - Minimize the sum of weighted measures
 - Minimize performance with additional constraints
 - Analytic constraints on actuators, such as $\beta_{95} \ge 3$
 - Simulation constraints like bounds on distance to instability
 - Multi-objective optimization and Pareto surfaces
- Additional information can improve performance
 - Exploit structure in the objective function and constraints
 - Use any available partial derivative information



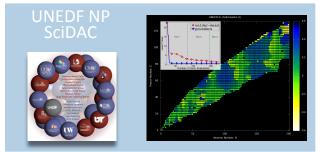


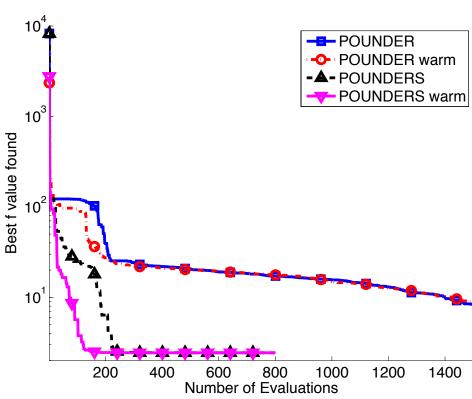


A Common Structure: Weighted Summations

$$\max f(x) + \sum_{i} w_{i} g_{i}(x)$$

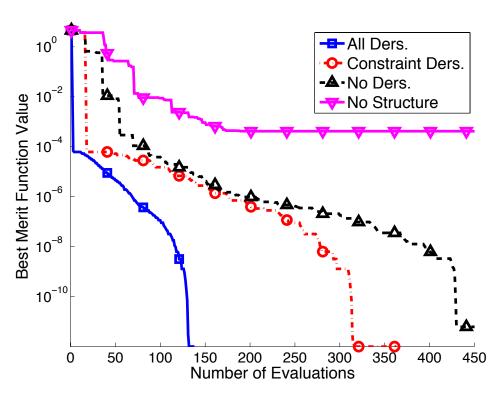
- Approximate the lowest level functions
 - Performance metric
 - Measures of distance to instability
 - Distance to an instability region can be well-behaved even though transitions are sharp
- Use available derivative information
 - Build better models with curvature
 - Can use partial derivatives
- Many benefits from using structure
 - Better approximations
 - Reduced number of simulation
- Objective weights are parameters
 - Explore alternative choices
 - Reuse function approximations
 - Reoptimize in fewer evaluations





Derivative-free Constrained Optimization

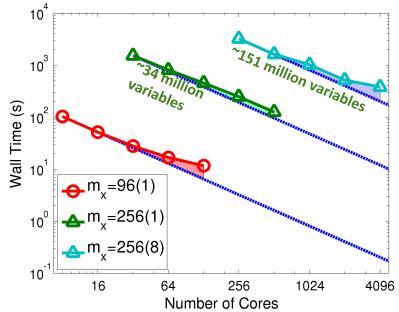
- Two types of constraints
 - Analytic constraints such as bounds on variables and linear combinations
 - For example, $B_{95} \le 3$
 - Simulation constraints such as bounds on the distance to outer edge instability
 - For example, $g_1(x) \ge 0.05$
- More information on the constraints and objective functions leads to better performance
 - Structure of the functions
 - Partial or full derivative information
- Solver capability should handle any additional information provided
- Reoptimize if the functions change



Test problem (n=15): 11 smooth constraints

Constrained Optimization with Derivatives

- Assume availability of derivative information
 - Jacobian of constraints with respect to design and state variables
 - Gradient of the objective function with respect to design and state variables
 - Approximation or exact Hessian of the Lagrangian
- Apply a Newton-based method
 - Solve a quadratic program to obtain a search direction
 - Use a line-search or trust-region method for global convergence
- Linearly-constrained augmented Lagrangian method in TAO
 - Compute a step toward feasibility using Newton step
 - Make a step toward optimality using a reduced-space quadratic programming step
 - Perform a line-search in the full space
 - Requires two linearized forward and adjoint solves per iteration
 - Obtains good scalability on test problems

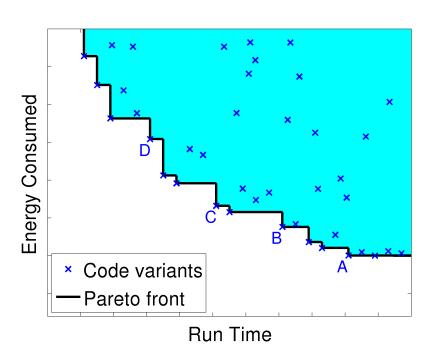


A Digression into Nonsmooth Optimization

- Free boundaries model the interface between different physics
 - For example, the Grad-Shafranov equation partitions space into plasma and vacuum
 - Solution is continuous but nondifferentiable across the interface
 - Can be modeled with differential variational inequalities
 - Results in nonsmooth functions
- Optimization algorithms may need to change for nondifferentiable functions
 - Construct smooth models of nonsmooth functions and apply existing methods
 - Many times ignoring nonsmoothness will work
 - Can get "trapped" at points of nondifferentiability
 - Alternative methods can overcome these problems
 - There are a variety of known methods
 - Have similarities to our existing methods

Multi-Objective Optimization

- Construct a Pareto surface
 - Explore surface to make tradeoffs
 - Useful mainly for small number of objective functions
- Performance optimization
 - Minimize run time
 - Minimize energy consumed
 - Discrete decision variables
- SUPER SciDAC Institute funds work for black-box simulations
- Similar techniques could be developed for grey-box simulations
 - Opportunity for deeper development and interactions
 - Might be applicable to design optimization problems



Toolkit for Advanced Optimization

$$\min \{ f(x) : l \le c(x) \le u \}$$

- Open-source package for numerical optimization on high-performance architectures
 - Some development funded under SciDAC-1 and SciDAC-2
 - Built on the PETSc infrastructure and linear solvers
 - Has been used in many applications since initial release in 2000 (over 6,700 downloads)
 - Chemisty (NWChem), Nuclear Physics (UNEDF HFBTHO, HFODD, MFDn)
 - Image processing, Machine learning, Medical applications
- Support for a range of optimization types with varying derivative requirements
 - Unconstrained and bound-constrained optimization methods
 - Black-box methods POUNDER and others
 - Gray-box methods POUNDERs for nonlinear least squares
 - Gradient-based methods guasi-Newton methods
 - Hessian-based methods Newton with a trust region and/or line search
 - PDE-constrained optimization methods using derivatives
 - Linearly constrained augmented Lagrangian method
 - Methods for complementarity problems and variational inequalities
 - Active-set methods
 - Semismooth Newton methods

http://www.mcs.anl.gov/tao

Some Discussion Questions

- What optimization problems does COMPASS need to solve?
 - What methods are you using and are you happy with them?
 - What are the bottlenecks in solving these problems?
- What new classes of problems would you want to solve with better tools?

